
International Journal of Engineering Sciences Paradigms and Researches, Vol. 02, Issue 01, December 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

59

A Mathematical Study of Software Testing Regarding A Mathematical Study of Software Testing Regarding A Mathematical Study of Software Testing Regarding A Mathematical Study of Software Testing Regarding

ComputerComputerComputerComputer MeasurementMeasurementMeasurementMeasurementssss

Suman Lata1, Navita2, Dr. Pardeep Goel3

1,2Research Scholar, Singhania University, Rajasthan (India)

3Associate Professor, M.M. College, Fatehabad, Haryana (India)

Abstract
The paper explains the mathematical study of software
testing and the measurement regarding software. Here we
explain the planning regarding software testing and the
metrics regarding software testing. Also the different
attributes for the software test planning are discussed in this
paper. The benefits of measurement in software testing are
explained in detail here. This paper shows that the software
measurement is the prime portion in the software testing.
Keywords: Software Testing, Software Measurement,
Software Metrics, Software Testing Attributes.

Introduction

Software testing is an investigation conducted to
provide stakeholders with information about the
quality of the product or service under test. Software
testing can also provide an objective, independent
view of the software to allow the business to
appreciate and understand the risks of software
implementation. Test techniques include, but are not
limited to, the process of executing a program or
application with the intent of finding software
bugs (errors or other defects).

Software testing can be stated as the process of
validating and verifying that a computer
program/application/product:

• meets the requirements that guided its design
and development,

• works as expected,
• can be implemented with the same

characteristics,
• And satisfies the needs of stakeholders.

Software testing, depending on the testing method
employed, can be implemented at any time in the
development process. Traditionally most of the test
effort occurs after the requirements have been
defined and the coding process has been completed,

but in the agile approaches most of the test effort is
on-going. As such, the methodology of the test is
governed by the chosen software development
methodology.

Different software development models will focus
the test effort at different points in the development
process. Newer development models, such as Agile,
often employ test-driven development and place an
increased portion of the testing in the hands of the
developer, before it reaches a formal team of testers.
In a more traditional model, most of the test
execution occurs after the requirements have been
defined and the coding process has been completed.

History

The separation of debugging from testing was
initially introduced by Glenford J. Myers in
1979. Although his attention was on breakage testing
("a successful test is one that finds a bug") it
illustrated the desire of the software engineering
community to separate fundamental development
activities, such as debugging, from that of
verification. Dave Gelperin and William C.
Hetzelclassified in 1988 the phases and goals in
software testing in the following stages:

• Until 1956 - Debugging oriented
• 1957–1978 - Demonstration oriented
• 1979–1982 - Destruction oriented
• 1983–1987 - Evaluation oriented
• 1988–2000 - Prevention oriented

A Sample Testing Cycle
Although variations exist between organizations,
there is a typical cycle for testing. The sample below

International Journal of Engineering Sciences Paradigms and Researches, Vol. 02, Issue 01, December 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

60

is common among organizations employing
the Waterfall development model.

• Requirements analysis: Testing should begin in
the requirements phase of the software
development life cycle. During the design phase,
testers work with developers in determining
what aspects of a design are testable and with
what parameters those tests work.

• Test planning: Test strategy, test
plan, testbed creation. Since many activities will
be carried out during testing, a plan is needed.

• Test development: Test procedures, test
scenarios, test cases, test datasets, test scripts to
use in testing software.

• Test execution: Testers execute the software
based on the plans and test documents then
report any errors found to the development team.

• Test reporting: Once testing is completed, testers
generate metrics and make final reports on
their test effort and whether or not the software
tested is ready for release.

• Test result analysis: Or Defect Analysis, is done
by the development team usually along with the
client, in order to decide what defects should be
assigned, fixed, rejected (i.e. found software
working properly) or deferred to be dealt with
later.

• Defect Retesting: Once a defect has been dealt
with by the development team, it is retested by
the testing team. AKA Resolution testing.

• Regression testing: It is common to have a small
test program built of a subset of tests, for each
integration of new, modified, or fixed software,
in order to ensure that the latest delivery has not
ruined anything, and that the software product as
a whole is still working correctly.

• Test Closure: Once the test meets the exit
criteria, the activities such as capturing the key
outputs, lessons learned, results, logs, documents
related to the project are archived and used as a
reference for future projects.

Benefits of Measurement in Software
Testing

1) Identification of testing strengths and
weaknesses.

2) Providing insights into the current state of
the testing process.

3) Evaluating testing risks.

4) Benchmarking.

5) Improving planning.

6) Improving testing effectiveness.

7) Evaluating and improving product quality.

8) Measuring productivity.

9) Determining level of customer involvement
and satisfaction.

10) Supporting controlling and monitoring of
the testing process.

11) Comparing processes and products with
those both inside and outside the
organization.

Methodology

Program testing and fault detection can be aided
significantly by testing tools and debuggers.
Testing/debug tools include features such as:

Program monitors, permitting full or partial
monitoring of program code including:

Instruction set simulator, permitting complete
instruction level monitoring and trace facilities

Program animation, permitting step-by-step
execution and conditional breakpoint at source level
or in machine code

Code coverage reports

Formatted dump or symbolic debugging, tools
allowing inspection of program variables on error or
at chosen points

Automated functional GUI testing tools are used to
repeat system-level tests through the GUI

Benchmarks, allowing run-time performance
comparisons to be made

Performance analysis (or profiling tools) that can
help to highlight hot spots and resource usage

International Journal of Engineering Sciences Paradigms and Researches, Vol. 02, Issue 01, December 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

61

Some of these features may be incorporated into
an Integrated Development Environment (IDE).

A regression testing technique is to have a standard
set of tests, which cover existing functionality that
result in persistent tabular data, and to compare pre-
change data to post-change data, where there should
not be differences, using a tool like diffkit.
Differences detected indicate unexpected
functionality changes or "regression".

Metric Support for Strategy

The attributes falling in the category of strategy
included

• Sequence of test cases.

• Identification of areas for further testing.

• Combination of test techniques.

• Adequacy of test data.

Measurement in Different Phases of
Software Testing

The software testing cycle starts from project startup
and ending to test process improvement. There are
ten more steps between these two which are shown in
the table 1 with the different measurements
Attributes.

Phase Historical
Value

% of Project Preliminary
Estimate

Adjusted
Estimate

Project Startup 140 2.6 179 179
Early Project Support

(Requirements analysis, etc.)
120 2.2 152 152

Decision to Automate Testing 90 1.7 117 -
Test Tool Selection and

Evaluation
160 3 207 -

Test Tool Introduction 260 5 345 345
Test Planning 530 10 690 690
Test Design 540 10 690 690

Test Development 1980 37 2553 2553
Test Execution 870 17 1173 1173

Test Management and Support 470 9 621 621
Test Process Improvement 140 2.5 173 -

Project Total 5300 100% 6900 6403
Table 1: Measurement in Different Testing Phases

Limitations of the approaches used for
estimation

1. The projections from the past testing effort cannot
be relied upon entirely. The testing professionals are
required to use their experience to deal with unusual
circumstances.

2. The testing maturity of the organization must be
considered while estimating.

3. The scope of the testing requirements must be
clear.

4. The introduction of an automated tool introduces
complexity into the project and must be considered
appropriately.

5. The domain knowledge of tester is an important
attribute that affects the time lines.

6. The test team organizational styles must be taken
into consideration.

7. The time at which test planning activity begins
matters because early start of the test planning
activity enables better understanding of requirements
and early detection of errors.

International Journal of Engineering Sciences Paradigms and Researches, Vol. 02, Issue 01, December 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

62

8. The presence or absence of documented processes
for testing makes up another important factor for
scheduling testing time.

9. Highly risky software requires more detailed
testing and must be taken into account while
estimating testing schedule.

10. There is a likelihood of change in requirements
and design during development.

11. The software should be delivered on time for
testing.

Conclusion

Measurement is a tool through which the
management identifies important events and trends,
thus enabling them to make informed decisions.
Moreover, measurements help in predicting outcomes
and evaluation of risks, which in turn decreases the
probability of unanticipated surprises in different
processes. In order to face the challenges posed by
the rapidly changing and innovative software
industry, the organizations that can control their
software testing processes are able to predict costs
and schedules and increase the effectiveness,
efficiency and profitability of their business.

References

[1] National Archives and Records Administration.

Testing Management Plan. Integrated Computer
Engineering, Inc. a subsidiary of American
Systems Corporation (ASC), 2003.

[2] R. Craig. Test Strategies and Plans. Copyright
Software Quality Engineering, Inc., 1999

[3] K. Iberle. Divide and Conquer: Making Sense of
Test Planning. In the International Conference on
Software Testing, Analysis and Review,
STARWEST, 1999.

[4] R. Shewale. Unit Testing Presentation. A
StickyMinds Article.

[5] http://www.stickyminds.com/getfile.asp?ot=XM
L&id=6124&fn=XDD6124filelistfilename1%2E
ppt, November 2006.

[6] R. Fantina. Practical Software Process
Improvement. Artech House Inc., 2005.

[7] R. Black. Managing the Testing Process. Second
Edition. Wiley Publishing, Inc., 2002.

[8] J. Bach. Testing Testers — Things to Consider
When Measuring Performance. A StickyMinds
Article. http://www.stickyminds.com, November
2006.

[9] C. Kaner. Measuring the Effectiveness of
Software Testers. Progressive Insurance, July
2006.

[10] The Standish Group. Chaos Report.
Twww.projectsmart.co.uk/docs/chaos_report.pdf
, 1995T.

[11] K. Molokken and M. Jorgensen. A Review of
Surveys on Software Effort Estimation. Simula
Research Laboratory, 2003.

[12] N. Bajaj, A. Tyagi, R. Agarwal. Software
Estimation – A Fuzzy Approach. ACM
SIGSOFT Software Engineering Notes Volume
31 Number 3, May 2006.

[13] J. P. Lewis. Limits to Software Estimation. ACM
SIGSOFT Software Engineering Notes Volume
26 Number 4, July 2001.

[14] D. V. Ferens, D. S. Christensen. Does
Calibration Improve the Predictive Accuracy of
Software Cost Models? CrossTalk, April 2000.

[15] K. Iberle, S. Bartlett. Estimating Tester to
Developer Ratios (or Not). Hewlett-Packard and
STEP Technology
 www.kiberle.com/pnsqc1/estimate.doc,
November 2006.

[16] L. M. Laird, M. C. Brennan. Practical Software
Measurement and Estimation: A Practical
Approach. Copyright IEEE Computer Society,
2006

[17] W. E. Lewis. Software Testing and Continuous
Quality Improvement. Second Edition. Auerbach
Publications, 2005.

[18] R. Patton. Software Testing. Sams Publishing,
July 2006.

[19] M. Marre´, A. Bertolino. Using Spanning Sets
for Coverage Testing. In IEEE Transactions on
Software Engineering, Volume 29, Number 11,
November 2003.

[20] S. Cornett. Code Coverage Analysis. Bull Seye
Testing Technology.
http://www.bullseye.com/coverage.html, Dec
2005.

[21] C. Kaner. Software Negligence and Testing
Coverage.
http://www.kaner.com/coverage.htm, 1996.

[22] P. Piwowarski, M. Ohba, J. Caruso. Coverage
Measurement Experience During Function Test.
International Business Machines Corporation. In
IEEE Software Engineering Proceedings, 1993.

